The Probabilistic Zeta Function
نویسندگان
چکیده
This paper is a summary of results on the PG(s) function, which is the reciprocal of the probabilistic zeta function for finite groups. This function gives the probability that s randomly chosen elements generate a group G, and information about the structure of the group G is embedded in it.
منابع مشابه
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملThe Moment Zeta Function and Applications
Motivated by a probabilistic analysis of a simple game (itself inspired by a problem in computational learning theory) we introduce the moment zeta function of a probability distribution, and study in depth some asymptotic properties of the moment zeta function of those distributions supported in the interval [0, 1]. One example of such zeta functions is Riemann’s zeta function (which is the mo...
متن کاملRecursion rules for the hypergeometric zeta function
The hypergeometric zeta function is defined in terms of the zeros of the Kummer function M(a, a+b; z). It is established that this function is an entire function of order 1. The classical factorization theorem of Hadamard gives an expression as an infinite product. This provides linear and quadratic recurrences for the hypergeometric zeta function. A family of associated polynomials is characte...
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملGeometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کامل